
JIRA 技术架构概览

On this page:

JIRA Overview
Technical Introduction to JIRA

WebWork
Seraph
Embedded Crowd

User properties in PropertySets.
Crowd Embedded user attributes.

PropertySet
JIRA Utility and Manager Classes

JIRA Overview

This page provides a very high level overview of JIRA's dependencies
and the role each one plays in JIRA. This page makes references to
external resources (websites, books) where one can find more
information.

Technical Introduction to JIRA

JIRA is a web application written in Java. It is deployed as a standard
 file into a java Servlet Container such as .Java WAR Tomcat

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WebComponents3.html
http://tomcat.apache.org/

WebWork

As JIRA is a web application, users interact with JIRA using a web
browser. JIRA uses OpenSymphony's to process web WebWork 1
requests submitted by users. Please note that WebWork 1, 2, is not
used. WebWork 1 is a MVC framework similar to Struts. Each request
is handled by a WebWork action which usually uses other objects,
such as utility and Manager classes to accomplish a task.

JIRA uses for the View layer. So most of HTML that is served to JSP
the user as the response to their web request is generated by a JSP.
Therefore, to generate a response the WebWork action uses a JSP.

Also see .JIRA Webwork Actions

For more information on WebWork 1 please see its online
.documentation

Seraph

http://www.opensymphony.com/webwork_old/src/docs/manual/
http://java.sun.com/products/jsp/
https://developer.atlassian.com/display/JIRADEV/JIRA+Webwork+Actions
http://www.opensymphony.com/webwork_old/src/docs/manual/
http://www.opensymphony.com/webwork_old/src/docs/manual/

Seraph

Almost all authentication in JIRA is performed through , Seraph
Atlasian's open source web authentication framework. The goal of
seraph is to provide a simple, extensible authentication system that
we can use on any application server.

Seraph is implemented as a . Its sole job is, given a web servlet filter
request, to associate that request with a particular user. It supports
several methods of authentication, including HTTP Basic
Authentication, form-based authentication (ie. redirect to an
internal or external login form), and looking up credentials already
stored in the user's session (e.g. a cookie set by a SSO system).

Seraph performs no user management itself. It merely checks the
credentials of the incoming request, and delegates any user-
management functions (looking up a user, checking a user's
password is correct) to JIRA's user-management -JIRA:Embedded

 (discussed later in this document).Crowd

If you were looking to integrate JIRA with a Single Sign-On (SSO)
solution, you would do so by writing a (custom Seraph authenticator
and in fact, many customers have done so). Please note that by
default JIRA is not shipped with any SSO integration, customers
have to write a custom Authenticator themselves. You may also
want to check out and .Crowd integrating JIRA with Crowd

http://opensource.atlassian.com/seraph/
http://java.sun.com/products/servlet/Filters.html
https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview#JIRAArchitecturalOverview-EmbeddedCrowd
https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview#JIRAArchitecturalOverview-EmbeddedCrowd
http://opensource.atlassian.com/seraph/sso.html
http://www.atlassian.com/software/crowd/
https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview

1.
2.

3.
4.

5.

6.

Another function that Seraph performs in JIRA is to very important
only allow users with Global Admin permission to access WebWork
actions that allow the user to perform administration tasks. These
WebWork actions are accessed by URLs starting with "/admin". For
more information on JIRA's permission please see JIRA's documentat

.ion

For more information on how seraph works internally please see this
.page

Embedded Crowd

Crowd is Atlassian's Identity Management and Single Sign On (SSO)
tool.
Both JIRA and Confluence now embed a subset of Crowd's core
modules for powerful and consistent user management.

Embedded Crowd provides the following functionality:

Stores users and groups in JIRA's database
Stores group membership (which users are part of which groups)
in JIRA's DB
Authenticates users (checks if the users password matches)
Provides API that allows to manage (create, delete) users,
groups and group memberships (add and remove users from
groups).
Allows JIRA to connect to external systems to retrieve user
/group data (eg Microsoft AD, LDAP or a standalone Crowd
server)

Keeps a copy of any external data in the local DB for faster

https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview
https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview
http://opensource.atlassian.com/seraph/concepts.html
http://opensource.atlassian.com/seraph/concepts.html
http://www.atlassian.com/software/crowd/

6. Keeps a copy of any external data in the local DB for faster
retrieval, and synchronises in the background.

As mentioned previously, Seraph delegates to Embedded Crowd to
authenticate the user (i.e. check whether the correct password has
been entered when a user tries to login).

For information on the DB tables used by Embedded Crowd see
"Users and Groups" in the page.Database Schema

JIRA supports the use of to store user preferencesJIRA:PropertySet
In JIRA the preferences include things like:

whether the user would like to receive HTML or Text e-mail
number of issues to display in JIRA's Issue Navigator
whether to receive notifications for user's own updates to issues
Locale (Language) of the user

In addition, Embedded Crowd also has its own concept of "User
Attributes".
The two concepts, although related, do provide different advantages
and disadvantages, so plugin developers should consider their
individual requirements in order to choose the more suitable way.
User properties in PropertySets.

PropertySet values are typed.
There are 11 different types allowed including numbers, dates,
arrays of bytes, parsed XML DOM's, nested Properties, and
arbitrary serialized Objects.

These can be arbitrarily large, as they can be stored as CLOBs or

https://developer.atlassian.com/display/JIRADEV/Database+Schema
https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview#JIRAArchitecturalOverview-PropertySet
https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview

1.

2.

These can be arbitrarily large, as they can be stored as CLOBs or
BLOBs in the database.
These large amounts of data are not suitable for searching
against.
PropertySets only allow a single value to be stored against a
given key.

Crowd Embedded user attributes.

Crowd Attributes store only text data.
In order to facilitate searchability, Crowd limits the values to 255
characters or less.
(Note that MySQL has a limitation that means you can't index
columns with > 255 characters)
Crowd allows multiple values to be stored against a single key.
These values must all be unique with a case-insensitive test.
(This follows the standard LDAP behaviour).

PropertySet

OpenSymphony's is a framework that can store a set of PropertySet
properties (key/value pairs) against a particular "entity" with a
unique id. An "entity" can be anything one wishes. For example,
JIRA's UserPropertyManager uses PropertySet to store user's
preferences. Therefore, in this case, the "entity" is a User.

Each property has a key (which is always a java.lang.String) and a
value, which can be:

java.lang.String

java.lang.Long

http://www.opensymphony.com/propertyset/

2.
3.
4.

1.

2.
3.
4.
5.

java.lang.Long
java.util.Date
java.lang.Double

Each property is always associated with entity. As far as one
PropertySet is concerned an "entity" has an entity name, and a
numeric id. As long as the same entity name/id combination is used
to store the value and retrieve the value, everything will work.

In JIRA PropertySet uses the following database tables:

propertyentry - records the entity name and id for a property,
its key, and the data type of the property's value. Each record in
this table also has a unique id.
propertystring - records String values
propertydecimal - records Double values
propertydate - records Date values
propertynumber - records Long values

Each of the records in property<type> tables also has an id column.
The id is the same as the id of the propertyentry record for this
property. As the property's key and value are split across 2 tables, to
retrieve a property value, a join needs to be done, between
propertyentry table and one of the property<type> tables. Which
property<type> table to join with is determined by the value of the pr

 column in the propertyentry record.opertytype

Here is an example of a full name stored for a user:
(to do)

PropertySet is used in JIRA:

1.
2.

3.

PropertySet is used in JIRA:

By the UserPropertyManager to store users preferences.
To store Application Properties, which are configurable settings
that a user can change to customise their installation of JIRA. For
more information on Application Properties please see JIRA's

.documentation
To store chosen preferences of on user's .gadgets dashboards

For more information on PropertySet please see . its documentation
Also see .JIRA Database Schema

JIRA Utility and Manager Classes

A lot of business logic in JIRA is implemented in 100s of java classes.
The classes can be simple utility classes or Manager Objects.

Manager Objects in JIRA usually have one specific goal (or topic). For
examplecom.atlassian.jira.project.version.

 is used to work with project versions, i.e. create, VersionManager

update, delete and retrieve versions.

Manager objects use a lot of external dependencies, most of which
are open source, but some are developed by Atlassian and are
usually shared between Atlassian products.

Since JIRA 3.7 Manager classes are generally also wrapped by a
corresponding service class. The idea is that any validation of
business logic necessary is carried out by the service classes whereas
manager classes are responsible for actually doing the action. For

instance see the and it's ProjectService's validateCreate method

https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview
https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview
https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview
https://developer.atlassian.com/display/JIRADEV/JIRA+Architectural+Overview
http://www.opensymphony.com/propertyset/default.jsp
https://developer.atlassian.com/display/JIRADEV/Database+Schema
http://docs.atlassian.com/software/jira/docs/api/latest/com/atlassian/jira/bc/project/ProjectService.html#validateCreateProject(com.opensymphony.user.User,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.Long)

instance see the and it's ProjectService's validateCreate method
corresponding . The ProjectManager then only has a create method cr

 which will go off and create a project assuming any eate method
validation has already been carried out by the client. This allows
clients to simply call the service class in order to validate and create
a project, but still gives the flexibility of circumventing validation if
the ProjectManager is used directly.

http://docs.atlassian.com/software/jira/docs/api/latest/com/atlassian/jira/bc/project/ProjectService.html#validateCreateProject(com.opensymphony.user.User,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.Long)
http://docs.atlassian.com/software/jira/docs/api/latest/com/atlassian/jira/bc/project/ProjectService.html#createProject(com.atlassian.jira.bc.project.ProjectService.CreateProjectValidationResult)
http://docs.atlassian.com/software/jira/docs/api/latest/com/atlassian/jira/project/ProjectManager.html#createProject(java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.Long,%20java.lang.Long)
http://docs.atlassian.com/software/jira/docs/api/latest/com/atlassian/jira/project/ProjectManager.html#createProject(java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.Long,%20java.lang.Long)

	JIRA 技术架构概览

